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To decode a (255,223) Reed-Solomon code over GF(28), a fast Fourier-like transform
over GF(28) has been developed to compute the syndromes and the error-erasure vectors
of the transmitted code words. This new simplified transform decoder is implemented in
a program on a digital computer. The (255,223) Reed-Solomon code over GF(28) is a
NASA standard for concatenation with a convolutional code. In a simulation, random
code words were corrupted by random error and erasure patterns, and decoded whenever
theoretically possible. A matrix of execution times for this new transform decoder under
varying sets of errors and erasure patterns is included in the paper. This matrix demon-
strates that the speed of the new decoder is between 3 and 7 times faster than the
standard R-S decoder, developed previously by NASA.

l. Introduction

Recently the authors developed (Ref. 2) a simplified algo-
rithm for correcting erasures and errors of Reed-Solomon
(R-S) codes over the finite field GF(p™), where p is a prime
and m is an integer. For a space communication application it
was shown (Ref. 3) that a 16-error-correcting R-S code of 255
eight-bit symbols, concatenated with a k = 7, rate = 1/2 or 1/3,
Viterbi decoded convolutional code, can be used to reduce the
signal-to-noise ratio required to meet a specified bit-error rate.
Such a concatenated code is being considered for the Galileo
project and the NASA End-to-End Data System.

In a concatenated code, the inner convolutional decoder is
sometimes able to find only two or more equally probable
symbols. For such a case, the best policy is to declare an
erasure of the symbol. If the outer R-S code is able to utilize
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the additional information that certain erasures have occurred,
then clearly the system performance will be enhanced.

The algorithm given in Ref. 2 is used here to correct
patterns of f errors and s erasures of the words of the
(255,223) R-S code, where 2 + s <33 and where the symbols
belong to the finite field GF(28). Define the following five
vectors:

(€ Cy»- - -»Cp54) = €, code vector
(ro:7ys---,T,54) = 1, received vector
(o> Mys - - - Mysq) = M, erasure vector
(eg-€1s...,€554) = €, error vector

_ o~
(Mgstys - .- Mp54) = T, NEW erasure vector



These vectors are related by r=c+pu+eand i =e + p.

Suppose that ¢ errors and s erasures occur in the received
vector r of 255 symbols, and assume 2¢ + s < 33. Then,
following the algorithm in Ref. 2, the decoding procedure
consists of these five steps:

(1) Compute the syndromes S, (1 < k < 32) of the re-

ceived 255-tuple (ry,r,, . . s ysa) e,
254 _
S, = 2 ra*fork=1,2,...,32 (1)
i=0

where e is an element of order 255 in GF(28). If §, = 0
for 1 < k < 32, then r is a code word and no further
decoding is necessary. Otherwise,

(2) Compute 7; for j=0.1,2, . . ., s from the erasure loca-
tor polynomial

o) =[] «-2) = 3 c1yrx (2)

=1 j=1

where s is the number of erasures in the received
vector, and Z]- (1 <j <s) are the known erasure loca-
tions. Next compute the Forney syndromes T for 1 <i
< 32 - s from the equation

s
Ti - Z ('I)JTJ‘SHs'j for1 <i<32-s &)
=0

where 7; (1 <j<s)and S, (1 <7< 32) are known.

(3) 1f 0 <5 <32, then use continued fractions (see Ref. 4)
to determine the error locator polynomial o(x) from
the known T;’s (I < i< 32 - s). For the special case
s =32, it was shown (Refs. 4, 5) that it is impossible
for any decoder to tell whether there are zero or more
additional errors. Thus, for s =32, the best policy is
not to decode the message at all.

(4) Compute the combined erasure and error locator poly-
nomial from the equation

stt

)=o) = 3 (DTSR (@)
. k=0

where o(x) and 7(x) are now known. Then compute the
rest of the transform of the erasure and error vector
from the equation

s+t

S, = 2 (1F7S,_, for 1>32,
k=1

Note that S, . =S,

(5) Compute the inverse transform of the syndrome vector
(Sg: Sy, ....85,54) to obtain the error-erasure vector.
That is, calculate

254
Bo= ety = D, Sa®fori=0,1,2,. ..
k=0

, 254 (5)

Finally, subtract the error-erasure vector g from the
received vector to correct it.

Previously the authors (Ref. 1) implemented the above
decoding procedure on the UNIVAC 1108 computer. The
disadvantage of this decoding program was that the syndromes
in Step 1 were computed directly instead of using FFT-like
techniques. Also, the slower Chien-type search was used to
find the roots of the error polynomial instead of Steps (4) and
(5), above. Finally, another direct inverse transform of the
syndrome vector points was used to obtain the error and
erasure magnitudes.

It was shown (Ref. 6) that a combination of the Chinese
remainder theorem and Winograd’s algorithm (Refs. 7 and 8)
could be used to develop a fast algorithm for computing the
syndromes needed for decoding an R-S or BCH code. Such a
method requires only a small fraction of the number of multi-
plications and additions that are required in a direct computa-
tion. More generally, it was shown also in Ref.9 that a
modification of Winograd’s method could be used to compute
(2™ - 1)-point transforms over GF(2™), where m = 4,5,6,8.

In this article, the methods developed in Refs. 6 and 9 are
applied to compute the syndromes in Step 1 and the error-
erasure vector discussed in Step 5. An important advantage of
this new transform decoder over the previous methods (Refs. 1
and 10) is that the complexity of the syndrome calculation is
substantially reduced. Furthermore, the Chien-type search
(Ref. 8) for the roots of the error locator polynomial is com-
pletely eliminated. These are replaced by the computation of a
255-point transform using FTT-like techniques. The result is a
simpler and faster decoder than can be obtained by conven-
tional means.

The simplified transform decoder was written in FOR-
TRAN V and was implemented on the UNIVAC 1108 com-
puter. The matrix of decoding times for correcting errors and
erasures of the (255,223) in this simplified decoder is given in
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Table 1. Also, the matrix of decoding times of the conven-
tional algorithm, described in Ref. 1, is provided in Table 2. A
comparison of Tables 1 and 2 shows that the new algorithm is
faster by a factor of from 3 to 7.

Il. A Fast Technique for Computing the
Error and Erasure Magnitudes

The computation of the error-erasure vector in Step 5 of
the transform decoder is based on the methods in Refs. 8
and 9. The key idea is the use of FFT-like techniques over the
the finite field GF(28). These concepts are used to compute
efficiently the expression

255-1 =
> a0 for0<j<254 (6)

i=0

where a is an element of order 255 in GF(28). To begin with,
since n = 255 =3 X § X 17, by Refs. 7 and 8, (6) can be
decomposed into the following 3 stages:

Stage 1

[ D .
33 3 for 0<j, <2

Al i ]3) E a; g

l =0

Stage 2
5-1
2 - 1 <j. <
AT dyeiy) Z Ay iyiy o * for 0</, <4
12:0
Stage 3
17-1
- 2 l 1 < i
Siiyiyeiy .ZOA Uiy TrOSi s st (D)
e

where a3 = @85 «, = o1, and a; = a29. In (7), Stage 1,
Stage 2, and Stage 3 are 3-, 5-, and 17-point transforms,
respectively. The detailed algorithms for computing the 3-, 5-,
and 17-point transform over GF(28) are reproduced in the
appendix. It follows from these algorithms that the number of
multiplications needed to compute a 3-, 5-, and 17-point
transform is 1, 5, and 53, respectively. In similar fashion, it
can be shown that the number of additions needed to compute
a 3-, 5-,and 17-point transform is 5, 17, and 173, respectively.
Thus, the total number of multiplications and additions
needed to compute the A; for 0 < /< 2541is 17 X 5 X 1 +
I7X5X3+453X5X3=1135and17X5X5+17X5X
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17 + 173 X 5 X 3 = 4465, respectively. In contrast, using a
Chien-type search algorithm, 254(s + f) multiplications and
254(s + 1) additions are required for a direct computation of
the inverse transform at the s + ¢ points corresponding to the
s erasure locations and the ¢ error locations.

lll. Program Design and Implementation

The decoding procedure described in the previous section
was implemented on the UNIVAC 1108 computer using FOR-
TRAN V. This program is used to correct any combination of
¢t errors and s erasures occurring in a 255-symbol R-S code
word, where 2¢ + s << 33. The overall basic structure of the
program is given in Fig. 1. It is divided into a main program
and five major subroutines.

The Main Program. This is the main driver of the rest of the
program. It initializes the decoding process and keeps track of
the elapsed CPU time.

Input. This subroutine generates a random code vector
(polynomial) R(x) for the R-S decoder and then adds errors
and erasures E(x) to it.

Step 1. The first 32 syndromes of the received vectors as
well as the corrected vectors are calculated in this subroutine
using a combination of the Chinese remainder theorem and
Winograd’s algorithm as described in Ref. 5. In case the cor-
rected received word is not an R-S code word, the subroutine
will output the message, “The corrected received vector is not
a codeword.” This helps to confirm the correctness of the
program, as well as to indicate that the number of errors and
erasures have exceeded the limits allowable by the decoder.

Step 2. This subroutine computes the Forney syndrome
vector T (Eq. 3) from the erasure vector Z. The erasure locator
polynomial 7(x) (Eq. 2) is also calculated in this step.

Step 3. The error locator polynomial o(x) is calculated
from the Forney syndrome vector T using the continued
fraction algorithm. The product of the error locator poly-
nomial o(x) and the erasure locator polynomial 7(x) is next
computed (Eq. 4). The coefficients of this erasure and error
locator polynomial are used to compute the remaining terms

Sygee1 Syes.

Step 4. This step directly computes the inverse Fourier
transform of the vector (S1,52 S, s5) to obtain the error
and erasure vector. Finally, the recelved vector is corrected to
provide an estimate of the transmitted code word.



IV. Simulation Resulits

The computation times of this new algorithm and the
conventional method described in Ref. I for decoding code
words which were corrupted by many different error and era-
sure patterns are given in Tables 1 and 2. These results were
obtained by performing five trials for each entry in the tables
and then averaging. Along any row or column, the computa-
tion times tend to increase with the row or column indices
until decoding failures occur due to an excess of allowable

errors and erasures. An examination of the decoding times in
these two tables indicates that the new decoder operates
considerably faster than the conventional decoder described in
Ref. 1. If the received word is the same as the originally
transmitted code word (i.e., if no errors or erasures occurred),
the new decoder will be seven times faster. If the received
word contains s erasures and ¢ errors, where 2¢ + 5 < 33, the
new decoder will operate about three times faster. Finally, if
2t + 5 2 33, then the new decoder will operate about twice as
fast.
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MAIN

DETERMINE ELAPSED
CPU TIME

|

INPUT

GENERATE A RANDOM R-5
CODE VECTOR THEN ADD
RANDOM ERRORS AND
ERASURES TO IT

l

STEP 1
COMPUTE SYNDROMES
S], 52, ceer 532 USING

METHOD IN REF 5

STEP 2

COMPUTE 7(x),

COMPUTE FORNEY SYNDROMES
FROM T(x) AND S; FOR
i=1,2,...,3%

I

STEP 3

COMPUTE o (x) AND

533, e 5255 FROM

o (x)T(x)

|

STEP 4

USE METHOD IN APPENDIX TO
COMPUTE INVERSE TRANSFORM
OF (54, Sps +++s Sygs) TO OBTAIN
ERROR AND ERASURE VECTOR AND
THEN CORRECT RECEIVED VECTOR

RETURN

Fig. 1. Basic functional structure of R-S decoding program using

transform over GF (28) and continued fractions



Appendix

This appendix contains the algorithms for computing 3-, 5-
and 17-point transforms over fields of characteristic two con-
taining the necessary roots of unity. Let « be an element of
order 255 in GF (28).

The 3-point transform is given by

3-1
o nk <
Ak E a, o for 0< k<2
n=0

where a4 = o®% is a primitive cube root of unity.

Algorithm for 3-Point Transform

= = + = = +m
5, a1+a2, A0 s, ta,, mpFas, s, AO r

= + = +
Al S, *ta,. A2 s, ta,

Thus, the 3-point transform requires only one multiplication
and five additions.

The 5-point transform is given by
5-1
A4, =, a o for 0<k<4
n=0

51

where o, =a” " is a primitive fifth root of unity.

Algorithm for S-Point Transform

= = +
N 02‘fa3, S2 dl 04,

= = +
. a, ta,, s,=a,ta,

53 4

= = = 3
Sg =8, +s,, Ag=sgta,, my (I+a3)s,

— (3 1 B - 3 - 4
n, =(a, +a3)s,, my =(a, tay)s,, m, =(a, +&7)s,,

_ 5 - -
ms-(a2+a2)s4, Sg =Agtmy, s, =S tmy,

=s, tm sg=mgta,, s ,=m,ta,

s8 3’ 9 10

s, =mgta,, S, =m, tay, Al =8 T8,

A, =5, %80, A =5, ts, A4=s8*l~s12

2 3

Thus, the 5-point transform requires only 5 multiplications
and 17 additions.

The 17-point transform is given by

where o, =a

120

is a primitive seventeenth root of unity.

Algorithm for 17-Point Transform
S, =Y, +Y,, S, =Y +Y, S, =Y +Y,

S,=Y,+Y,,
N,=(4+B)S,, N,=(C+B)S,,

N =(C+A)S,, N, =E-Y,,

Ny=E-Y,,
S, =N N,
S10 =N6 +N5,
X, =S, +N,.
where
8
o,
6
@,
4 13
@,
14
&y
2
@,
10
@,
B 16
&y
al?

S =5,

Ny=E-

+S,,

Y,,

S8 =56+N4,

X, =85,V
o ald
ol gl
alt o
o2 al®
alO a16
1
alé a12
1
ai2 a?
o« ol

N, =BS,,

N, =E-Y,,

S9=S7+N4,

S;1 =S, Ng, X =S8 N

X} =S9.+A@

9°?

N,=(C+A4)S,,

(A1)
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KR
oll of a‘;’ a}s
¢= oz‘l1 af al? a;’
@ W
al’ o) a; o
aj al af a?
S
o ol al a’
X1=[A3’A15’A7’A1]T’ Xzz[As’As’Aa’Am]T’
Xy=14,,.45,4,,.4,17,
Xy =14,,.4,.4,5,4, 17,
E=A+B+C+D

and Y, through Y, are obtained from the expressions for X,
through X, on replacing each A; by a;,. Note that (A-1)
requires nine (4 X 4) matrix multiplications.

For convenience,

7
a, ol
i

i=0

will be represented as the integer

7

> 4,2
1

i=0

Observe that NV, in (A-1) can be put in the form

b, 44 150 169 195 ¢,
b, 150 169 145 185 c,
b, |~ |160 145 185 193 c, (A-2)
b, 145 185 193 36 ¢,

90

where

= -+ =
cl 03 as+al2+al4, c2 als+a8+a9+a2,
c3—a7+a6+a11+a10, c4=a1+a13+a4+a16

From (B-8) in Ref. 9, one obtains the algorithm for computing
(A-2). That is,

= = = = +
s, cl+c3, 5, cl+c2, 84 cz+c4, S, =y tc,,

$g=8,t5,, M1 =145><s5, M2=56><s1,

M, =40X sy, M,=7Xs,, Ms=80Xs,,

M6=13O><c1, M7=23X6’2, M8=64><c7,

M9=205><c4, 6:aOXM1, s7=s6+M2,

s8=s7+M4, sg=s6+M3, slo=s9+M4,

Spp =Sy P Mg, 8, =Sg My, by =5t M,

by=s10t My by=s ot My, b =5, + M,
AO+S5

Thus,

b1=s8+M6, b2=s10+M7, b3=s10+M8,
b4=s“+M9

Hence, the total number of Galois field multiplications and
additions needed to compute N, is 9 and 17, respectively.

The quantities N, for i = 2, 3, 4, 5, defined in (A-1), are
computed by the same procedure as indicated in Ref. 9. The
number of multiplications and additions needed to compute
N;fori=2,3,4,5is9 and‘IS, respectively.

To compute N, for i = 6,7, 8, 9, for example, consider Ny =
E-Y, ie.,

b 170 0 85 0 a

1 [} a [} o 3
byl [0 85 0 170} | e
byl 185 0 10 0 a, | A9
by \,0 70 0 .85 a,

By a procedure similar to that used to compute the matrix
(B-8) in Ref. 9, one obtains the algorithm for (A-3). That is,



154 ta,,
M2 =215Xs1,
S5 =M1 +M3,
b3=s4+a7,

M =214Xs,, s,=M +M,,

=a g ta, sy=s ts,, M =1Xs,, Thus, from (A-4), the number of multiplications and additions

15 “1°
needed to compute N, is 2 and 9, respectively. Similarly, the

matrix N; for i = 7, 8, 9 requires 2 multiplications and 9
additions. After combining the above results, the total number

=5, ta,, b2=s5+a15, ) : X
of multiplications and additions needed to compute a 17-point

b,=s,ta (A-4) transform in GF(28) is 53 and 173, respectively.

10.
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